skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Feakins, S_J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract End of 21st‐century hydroclimate projections suggest an expansion of subtropical dry zones, with Mediterranean and Sahel regions becoming much drier. However, paleobotanical assemblage evidence from the middle Miocene (17‐12 Ma), suggests both regions were instead humid environments. Here we show that by modifying regional sea surface temperatures (SST) in an Earth System Model (CESM1.2) simulation of the middle Miocene, the increased ocean evaporation and integrated water vapor flux overrides any drying effects associated with warming‐induced land‐surface evaporation driven by atmospheric CO2concentrations. These modifications markedly reduce the bias in the model‐data comparison for this period. A vegetation model (BIOME4) forced with simulated climatologies predicts both regions were dominated by mixed forest, which is largely consistent with the paleobotanical record. This study unveils the potential for wetter subtropical Mediterranean climates associated with warming, presenting an alternative scenario from future drying projections with localized SST warming governing regional climate change. 
    more » « less
  2. Abstract The Pliocene Epoch (∼5.3–2.6 million years ago, Ma) was characterized by a warmer than present climate with smaller Northern Hemisphere ice sheets, and offers an example of a climate system in long‐term equilibrium with current or predicted near‐future atmospheric CO2concentrations (pCO2). A long‐term trend of ice‐sheet expansion led to more pronounced glacial (cold) stages by the end of the Pliocene (∼2.6 Ma), known as the “intensification of Northern Hemisphere Glaciation” (iNHG). We assessed the spatial and temporal variability of ocean temperatures and ice‐volume indicators through the late Pliocene and early Pleistocene (from 3.3 to 2.4 Ma) to determine the character of this climate transition. We identified asynchronous shifts in long‐term means and the pacing and amplitude of shorter‐term climate variability, between regions and between climate proxies. Early changes in Antarctic glaciation and Southern Hemisphere ocean properties occurred even during the mid‐Piacenzian warm period (∼3.264–3.025 Ma) which has been used as an analog for future warming. Increased climate variability subsequently developed alongside signatures of larger Northern Hemisphere ice sheets (iNHG). Yet, some regions of the ocean felt no impact of iNHG, particularly in lower latitudes. Our analysis has demonstrated the complex, non‐uniform and globally asynchronous nature of climate changes associated with the iNHG. Shifting ocean gateways and ocean circulation changes may have pre‐conditioned the later evolution of ice sheets with falling atmosphericpCO2. Further development of high‐resolution, multi‐proxy reconstructions of climate is required so that the full potential of the rich and detailed geological records can be realized. 
    more » « less